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LONG-TERM GOALS 
 
The long-term goal of this program is to understand the processes of instability that generate turbulent 
mixing and drag, especially in the coastal ocean. Our ongoing studies of both the kinematics and 
dynamics of turbulence and small-scale physical phenomena in the ocean leading to turbulence 
emphasize observations, a program of continued sensor and instrumentation development, and 
interaction with turbulence modelers. 
 
OBJECTIVES 
 
Our objectives are to: 

• determine the influence of solitons on mixing of water masses and flow drag over the 
continental shelf. Specifically, from an ensemble of wave train observations we hope to 
determine: 

• generation sites of internal solitary waves observed in COPE and by us in June 2000 

• evolution of dissipation as waves progress across the shelf from site of generation 

• bottom boundary layer signature of the waves 

• net contribution to mixing of stratified fluid in mid-water column 

• distribution of wave mixing across the shelf 

• distribution of wave-induced bottom stress across the shelf. 

• make the 1st systematic estimates of the turbulent diffusivity for salt 

• determine the influence of small topographic features on mixing and flow drag over the shelf. 
Specifically, to complete analyses of and publish results from extended studies of hydraulically-
controlled flow over Stonewall Bank. 

 
APPROACH 
 
We have developed and partially tested an experimental plan to observe internal solitary waves on the 
Oregon shelf. In a pilot experiment conducted in June 2000, we combined acoustic backscatter 
measurements (Farmer) with shipboard ADCP and our microstructure profiling measurements (using 
CHAMELEON), all from the same platform. This permitted an observational view of shoreward-
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propagating internal solitary waves not previously achieved. Some of the difficulties in making these 
observations became apparent in the pilot experiment and in post-analysis of the data. First of all, it is 
very difficult to detect the generation site from a ship alone because of the limited field of view from a 
ship. Secondly, we discovered that another wave train crossed the path of the original as we 
approached shore, making the identification of the original wave train ambiguous. Thirdly, we believe 
that the bottom velocity due to the wave passage is an important quantity in determining both the wave 
dissipation (via bottom boundary layer (BBL) turbulence) and to the local current (via bottom stress) – 
this is impossible to measure from shipboard ADCP. 
 
To remedy these shortcomings, we plan several additions for our September 2001 field experiment: 

1) to improve local scale detection of the wave trains, we will sample the ship’s X-band radar. We 
will set up a web camera and log the radar screen photographically. We expect this will tell us 
the position of a particular wave in the wave train and help to resolve ambiguity due to crossing 
wave trains. (Moum)  

2) to improve large scale detection of the wave trains, we will photograph the sea surface from 
aircraft. (Armi) 

3) to detect bottom currents, we will place a bottom mooring with upward-looking ADCP, point 
ADV measurement and SeaBird T/C pair. (Moum) 

4) to better sample the upper 5 m (above the depth at which shipboard transducers are mounted) a 
small boat outfitted with echosounder and ADCP will be periodically deployed during 
CHAMELEON operations. (Farmer) 

 
WORK COMPLETED 
 
At this writing, we are preparing to embark on a 20-day experiment to investigate internal solitary 
waves on the continental shelf. 
 
Two papers were published in which the salient features of hydraulic flow around Stonewall Bank are 
identified, and drag and mixing due to the bank quantified. A comprehensive analysis of the 
dissipation spectrum of salinity and resultant fluxes has led to an evaluation of differential diffusion in 
weakly turbulent flows – a paper is in press on this topic.  
 
RESULTS  
 
Analysis of data obtained in our June 2000 solitary wave pilot experiment is ongoing. By using the 
ship to make repeated passes through the wave train, we have been able to examine the evolution and 
dissipation occurring in these internal solitary waves as they move shoreward on the shelf.  At the 
wave’s leading edge instabilities on the sheared interface appear similar to those found in laboratory 
studies.  These are revealed in higher resolution acoustic backscatter not shown here. The result is very 
intense turbulence above the interface (Figure 1). In fact, our observations indicate that the kinetic 
energy dissipated by turbulence in the wave is sufficient to account for the total kinetic energy lost 
during the time we were able to observe the leading wave of this wave train (Figure 2). 
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Figure 1 – CHAMELEON profiles indicate strong turbulence within the wave structure, which is 
clearly outlined by acoustic backscatter. These were made with the ship drifting and the wave 

propagating shoreward (right to left) past the ship. Profiles do not line up exactly with the acoustic 
image due to relative motion of ship and CHAMELEON during the profile. 

 
Figure 2 – Evolution of the observed wave as it propagated 30 km onshore during a 12 h period 

(mean phase speed, 0.7 m/s). The wave kinetic energy (top panel) decreased by a factor of 5, or at 
the rate –6.4 W per unit crest length. This is nearly equal to the mean value of the turbulent 

dissipation rate measured in the wave during the 8 profiling transects (2nd panel, blue). 
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In June 2000, we also conducted a more intensive experiment to investigate the flow over Stonewall 
Bank. We made a series of 28 transects across the bank. These revealed the following flow states: 

• crest-controlled, strong downslope, lower layer flow from NE→SW over the bank. This is 
similar to what we have observed previously (Moum & Nash, 2000; Nash & Moum, 2001); 

• crest-controlled, strong downslope, lower layer flow from SW→NE over the bank – that is, the 
flow can be controlled in the opposite direction; 

• a thinning, accelerated upper layer from NE→SW over the bank. This raises the issue of 
whether the upper layer can become supercritical – further analysis is needed to identify 
potential control. 

 
Each of these states is associated with highly turbulent fluid in the BBL, the sheared interfaces and in 
the downstream hydraulic jump region. 
 
Another important new aspect of the flow over Stonewall Bank is the identification of the downstream 
wake (Figure 3).  We observed a quasiperiodic train of co-rotating vortices with separation several 
hundred meters and 25 m vertical isopycnal displacements downstream of the bank. In the upwelled 
BBL at the base of these waves were high levels of turbulence. We hypothesize that this is a remote 
effect of the hydraulic flow over the bank on the surrounding shelf circulation, either in the form of a 
vortex street or released lee waves. 

 
Figure 3 – One of 28 transects across Stonewall Bank in June 2000. The top panel shows density as 

determined from CHAMELEON, the 2nd panel is the cross-bank current and the 3rd panel is the 
along-bank current. The 4th panel is the acoustic backscatter from a high frequency echosounder 

mounted in the hull of the ship (Farmer) and the bottom panel is the turbulent dissipation rate with 
density contours. The total length of this transect is 8 km. Bottom is shaded gray in all panels except 
the echosounder intensity in which the bottom is indicated by the high backscattering strength (red). 

The downstream wake includes large amplitude waves west (to the left of) 124.44 W. 
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IMPACT/APPLICATION 
 
The disturbances to the coastal circulation due to flow over banks which may occupy a small portion 
of the continental shelf, and internal solitary waves which occur relatively infrequently, can exercise a 
disproportionate influence on coastal circulation arising from enhanced drag and mixing.  As yet, such 
effects are not incorporated in larger scale coastal circulation models.  Improved representation of 
these effects requires that we adequately characterize the small-scale dynamics, allowing accurate 
incorporation in the larger scale models.  The present work is intended to lead to this result.   
 
RELATED PROJECTS 
 
This project represents a close collaboration with David Farmer (IOS) and Larry Armi (SIO). 
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